Kaons, Heavy Bosons, Technicolor, Compositeness

Tom Trippe
PDG Advisory Committee Meeting
December 17, 2000

Kaons

- G. Conforto (encoder), T. Trippe (overseer)
- 39 papers added between 1998 and 2000 editions
 - Rare K decays, esp. K⁺→πνν, πee, K_L→μμ, eμ (BNL) K_L→πνν limit, πγγ (FNAL), T violation, CPT Invariance in K⁰-K⁰ mixing (CERN)
 - CP violation params. $Im(\eta_{000})$,
- New Review
 - CPT Invariance Tests in Neutral Kaon Decay, P. Bloch.
- Significantly Revised Reviews
 - Rare Kaon Decays, L. Littenberg and G. Valencia
 - Fits for K_L CP-Violation Parameters, T. G. Trippe

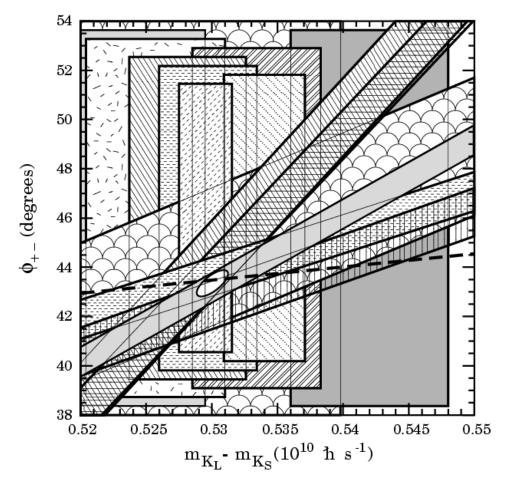
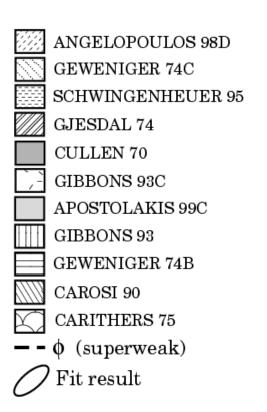



Figure 1: ϕ_{+-} vs Δm . Δm measurements appear as vertical bands spanning $\Delta m \pm 1\sigma$, some of which are cut near the top to aid the eye. The ϕ_{+-} measurements appear as diagonal bands spanning $\phi_{+-} \pm \sigma_{\phi}$. The dashed line shows ϕ (superweak). The ellipse shows the 1σ contour of the fit result. See Table 1 for data references.

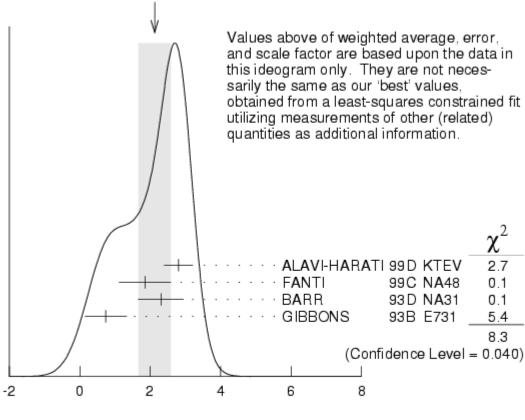


Table 2: Results of the fit for ϕ_{+-} , ϕ_{00} , $\phi_{00} - \phi_{+-}$, Δm , and τ_s . The fit has $\chi^2 = 16.0$ for 20 degrees of freedom (24 measurements -5 parameters +1 constraint).

Quantity	Fit Result
φ ₊₋	$43.3 \pm 0.5^{\circ}$
Δm	$(0.5300 \pm 0.0012) \times 10^{10} h \text{ s}^{-1}$
$ au_{\scriptscriptstyle S}$	$(0.8935 \pm 0.0008) \times 10^{-10} s$
ϕ_{00}	$43.2 \pm 1.0^{\circ}$
$\Delta \phi$	$-0.1 \pm 0.8^{\circ}$

WEIGHTED AVERAGE 2.1±0.5 (Error scaled by 1.7)

ε'/ε in K_L decay

 ε'/ε in units 10^{-3}

$$\epsilon'/\epsilon \approx \operatorname{Re}(\epsilon'/\epsilon) = (1-\left|\eta_{00}/\eta_{+-}\right|)/3$$

Future

- New ε'/ε coming soon from KTeV and NA48
- New rare K decays from BNL, KTeV and NA48
 - flavor changing neutral currents, lepton number violation
- K decay results starting to come out of HYPER-CP
- Ke4 decays from BNL E865→Chiral Perturbation Theory parameters
- Further work on CP violation fits
 - Separate $\Delta M(K_L-K_S)$ measurements which assume CPT. Meet in March at U. Chicago to sort this out.

Heavy Bosons and Technicolor

- M. Tanabashi (encoder), C. Kolda (overseer),
 T. Trippe (coordinator).
- Updated W', Z'data (28 new papers) and Reviews
- Eliminated many old and outdated theory limits
- Problems in Heavy Bosons
 - Z' mixing angle limits appear only in footnotes of mass section. Perhaps create mixing angle data sections.
 - Kinetic mixing between Z' and hypercharge quantum number may be important, but difficult to encode

Heavy Bosons and Technicolor (cont.)

- New Technicolor section
 - New review: Dynamical Electroweak Symmetry
 Breaking, by R. S. Chivukula and J. Womersley
 - Review includes published and preliminary data
 - New data listings (4 published papers)

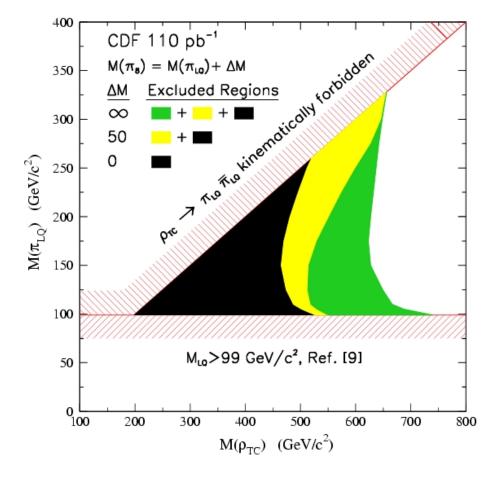


Figure 6: 95% CL exclusion region [24] in the technirho-technipion mass plane for pair produced technipions, with leptoquark couplings, decaying to τq .

Table 1: Summary of the mass limits. Symbols are defined in the text.

Process	Excluded mass range Decay channels	Ref.
$p\overline{p} \to \rho_T \to W \pi_T$	$170 < m_{\rho_T} < 190 \text{ GeV} \qquad \rho_T \to W \pi_T$ $\text{for } m_{\pi_T} \approx m_{\rho_T}/2 \qquad \qquad \pi_T^0 \to b\bar{b}$ $\pi_T^+ \to b\bar{c}$	[13]*
$p\overline{p} \to \omega_T \to \gamma \pi_T$	$140 < m_{\omega_T} < 290 \text{ GeV}$ $\omega_T \to \gamma \pi_T$ for $m_{\pi_T} \approx m_{\omega_T}/3$ $\pi_T^0 \to b\bar{b}$ and $M_T = 100 \text{ GeV}$ $\pi_T^{\pm} \to b\bar{c}$	[15]
$p\overline{p} o \omega_T/ ho_T$	$m_{\omega_T} = m_{\rho_T} < 250 \text{ GeV } \omega_T/\rho_T \to \ell^+\ell^-$ for $m_{\omega_T} < m_{\pi_T} + m_W$ or $M_T > 300 \text{ GeV}$	[16]*
$e^+e^- \to \omega_T/\rho_T$	$m_{\omega_T} = m_{\rho_T} < 190 \text{ GeV} \qquad \begin{array}{l} \rho_T \to WW, \\ W\pi_T, \ \pi_T\pi_T \\ \omega_T \to \gamma\pi_T \\ \pi_T^0 \to b\bar{b} \\ \pi_T^\pm \to b\bar{c} \end{array}$	[18]*
$p\overline{p} \to \rho_{T8} p\overline{p} \to \rho_{T8}$	$260 < m_{\rho_{T8}} < 480 \text{ GeV} \begin{array}{c} T \\ \rho_{T8} \xrightarrow{I} q\overline{q}, \ gg \\ m_{\rho_{T8}} < 465 \text{ GeV} & \rho_{T8} \xrightarrow{\pi_{LQ}} \pi_{LQ} \\ \pi_{LQ} \xrightarrow{\tau_{T}} \tau_{T} \end{array}$	[22] [24]
$p\overline{p} \to g_t$	$0.3 < m_{g_t} < 0.6 \text{ TeV} $ $g_t \rightarrow b\overline{b}$ for $0.3 m_{g_t} < \Gamma < 0.7 m_{g_t}$	[28]
$p\overline{p} o Z'$	$m_{Z'} < 650 \text{ GeV}$ $Z' \to t\bar{t}$ for $\Gamma = 0.012 m_{Z'}$	[29]*

^{*}Preliminary, not yet published.

Technicolor problems

- FCNC constraints of Extended Technicolor are dependent on assumptions and difficult to encode.
- No "standard" or "benchmark" TC model so difficult to encode. Review and extensive footnote to the data are required.
- Techni-hadrons can be regarded as strongly interacting versions of Z', axigluon, leptoquarks, could encode there, but needs extensive footnotes.
- Models combining extra dimensions and topcolor are too theoretical at present to encode.

Compositeness

- M. Tanabashi (encoder), C. Carone (overseer),
 T. Trippe (coordinator).
- Updated Listings for 20 new papers
- Effective Lagrangian method well-defined at tree level, so gives "benchmark" test for experiments

Problems

- Not well-defined at loop level. Don't encode limits from one-loop effects
- SUSY composite models too theoretical and not for RPP encoding at present
- Perhaps encode $1/\Lambda^2$ instead of Λ^+ and Λ^- since it is more directly constrained by experiment.